数码控科技猎奇Iphone动漫星座游戏电竞lolcosplay王者荣耀攻略allcnewsBLOGNEWSBLOGASKBLOGBLOGZSK全部技术问答问答技术问答it问答代码软件新闻开发博客电脑/网络手机/数码笔记本电脑互联网操作系统软件硬件编程开发360产品资源分享电脑知识文档中心IT全部全部分类全部分类技术牛文全部分类教程最新网页制作cms教程平面设计媒体动画操作系统网站运营网络安全服务器教程数据库工具网络安全软件教学vbscript正则表达式javascript批处理更多»编程更新教程更新游戏更新allitnewsJava新闻网络医疗信息化安全创业站长电商科技访谈域名会议专栏创业动态融资创投创业学院 / 产品经理创业公司人物访谈营销开发数据库服务器系统虚拟化云计算嵌入式移动开发作业作业1常见软件all电脑网络手机数码生活游戏体育运动明星影音休闲爱好文化艺术社会民生教育科学医疗健康金融管理情感社交地区其他电脑互联网软件硬件编程开发360相关产品手机平板其他电子产品摄影器材360硬件通讯智能设备购物时尚生活常识美容塑身服装服饰出行旅游交通汽车购房置业家居装修美食烹饪单机电脑游戏网页游戏电视游戏桌游棋牌游戏手机游戏小游戏掌机游戏客户端游戏集体游戏其他游戏体育赛事篮球足球其他运动球类运动赛车健身运动运动用品影视娱乐人物音乐动漫摄影摄像收藏宠物幽默搞笑起名花鸟鱼虫茶艺彩票星座占卜书画美术舞蹈小说图书器乐声乐小品相声戏剧戏曲手工艺品历史话题时事政治就业职场军事国防节日风俗法律法规宗教礼仪礼节自然灾害360维权社会人物升学入学人文社科外语资格考试公务员留学出国家庭教育学习方法语文物理生物工程学农业数学化学健康知识心理健康孕育早教内科外科妇产科儿科皮肤科五官科男科整形中医药品传染科其他疾病医院两性肿瘤科创业投资企业管理财务税务银行股票金融理财基金债券保险贸易商务文书国民经济爱情婚姻家庭烦恼北京上海重庆天津黑龙江吉林辽宁河北内蒙古山西陕西宁夏甘肃青海新疆西藏四川贵州云南河南湖北湖南山东江苏浙江安徽江西福建广东广西海南香港澳门台湾海外地区

TensorFlow卷积神经网络之使用训练好的模型识别猫狗图片

来源:脚本之家  责任编辑:小易  

本文是Python通过TensorFlow卷积神经网络实现猫狗识别的姊妹篇,是加载上一篇训练好的模型,进行猫狗识别

本文逻辑:

  1. 我从网上下载了十几张猫和狗的图片,用于检验我们训练好的模型。
  2. 处理我们下载的图片
  3. 加载模型
  4. 将图片输入模型进行检验

代码如下:

#coding=utf-8 
import tensorflow as tf 
from PIL import Image 
import matplotlib.pyplot as plt
import input_data 
import numpy as np
import model
import os 
#从指定目录中选取一张图片 
def get_one_image(train): 
  files = os.listdir(train)
  n = len(files)
  ind = np.random.randint(0,n)
  img_dir = os.path.join(train,files[ind]) 
  image = Image.open(img_dir) 
  plt.imshow(image)
  plt.show()
  image = image.resize([208, 208]) 
  image = np.array(image)
  return image 
def evaluate_one_image(): 
 #存放的是我从百度下载的猫狗图片路径
  train = '/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/testImg/' 
  image_array = get_one_image(train) 
  with tf.Graph().as_default(): 
    BATCH_SIZE = 1 # 因为只读取一副图片 所以batch 设置为1
    N_CLASSES = 2 # 2个输出神经元,[1,0] 或者 [0,1]猫和狗的概率
    # 转化图片格式
    image = tf.cast(image_array, tf.float32) 
    # 图片标准化
    image = tf.image.per_image_standardization(image)
    # 图片原来是三维的 [208, 208, 3] 重新定义图片形状 改为一个4D 四维的 tensor
    image = tf.reshape(image, [1, 208, 208, 3]) 
    logit = model.inference(image, BATCH_SIZE, N_CLASSES) 
    # 因为 inference 的返回没有用激活函数,所以在这里对结果用softmax 激活
    logit = tf.nn.softmax(logit) 
    # 用最原始的输入数据的方式向模型输入数据 placeholder
    x = tf.placeholder(tf.float32, shape=[208, 208, 3]) 
    # 我门存放模型的路径
    logs_train_dir = '/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/saveNet/'  
    # 定义saver 
    saver = tf.train.Saver() 
    with tf.Session() as sess: 
      print("从指定的路径中加载模型。。。。")
      # 将模型加载到sess 中 
      ckpt = tf.train.get_checkpoint_state(logs_train_dir) 
      if ckpt and ckpt.model_checkpoint_path: 
        global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] 
        saver.restore(sess, ckpt.model_checkpoint_path) 
        print('模型加载成功, 训练的步数为 %s' % global_step) 
      else: 
        print('模型加载失败,,,文件没有找到') 
      # 将图片输入到模型计算
      prediction = sess.run(logit, feed_dict={x: image_array})
      # 获取输出结果中最大概率的索引
      max_index = np.argmax(prediction) 
      if max_index==0: 
        print('猫的概率 %.6f' %prediction[:, 0]) 
      else: 
        print('狗的概率 %.6f' %prediction[:, 1]) 
# 测试
evaluate_one_image()

/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/testImg/ 存放的是我从百度下载的猫狗图片

执行结果:

因为从testimg 中选取图片是随机的,所以每次执行的结果不同

从指定的路径中加载模型。。。。
模型加载成功, 训练的步数为 11999
狗的概率 0.964047
[Finished in 6.8s]

代码地址:https://github.com/527515025/My-TensorFlow-tutorials/blob/master/猫狗识别/evaluateCatOrDog.py

欢迎star。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对脚本之家的支持。如果你想了解更多相关内容请查看下面相关链接

您可能感兴趣的文章:


  • 本文相关:
  • python通过tensorflow卷积神经网络实现猫狗识别
  • python3实现钉钉消息推送的方法示例
  • 详解python做一个名片管理系统
  • 在python中使用neo4j的方法
  • 浅谈python中eval的强大与危害
  • 详解python中init方法和随机数方法
  • python使用sqlalchemy模块连接数据库操作示例
  • python ---lambda匿名函数介绍
  • python实现的调用c语言函数功能简单实例
  • python3调用百度ai识别图片中的文字功能示例【测试可用】
  • python爬虫设置代理ip的方法(爬虫技巧)
  • python引用计数操作示例
  • python利用字典将两个通讯录文本合并为一个文本实例
  • 基于进程内通讯的python聊天室实现方法
  • python实现快速排序算法及去重的快速排序的简单示例
  • python3多线程爬虫实例讲解代码
  • 如何利用boost.python实现python c/c++混合编程详解
  • python数据可视化正态分布简单分析及实现代码
  • python人人网登录应用实例
  • python利用pyhook实现监听用户鼠标与键盘事件
  • 免责声明 - 关于我们 - 联系我们 - 广告联系 - 友情链接 - 帮助中心 - 频道导航
    Copyright © 2017 www.zgxue.com All Rights Reserved