Tensorflow训练MNIST手写数字识别模型_python

来源:脚本之家  责任编辑:小易  

惰行模式就是利用车辆自身的惯性进行滑行,是一种有效节约能源的运行模式,地铁车辆区间的基本运行模式是:牵引—惰行—制动www.zgxue.com防采集请勿采集本网。

本文实例为大家分享了Tensorflow训练MNIST手写数字识别模型的具体代码,供大家参考,具体内容如下

保养要看你的使用情况了,一般小保养在八九百左右,大保养在两三千以上,一般一万公里做一次小保养,如果你的车一年跑1万公里,你的保养也就一千多,车子只有在跑的公里数多的时候保养在会比较费钱,但是

import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入层节点=图片像素=28x28=784OUTPUT_NODE = 10 # 输出层节点数=图片类别数目 LAYER1_NODE = 500 # 隐藏层节点数,只有一个隐藏层BATCH_SIZE = 100 # 一个训练包中的数据个数,数字越小 # 越接近随机梯度下降,越大越接近梯度下降 LEARNING_RATE_BASE = 0.8 # 基础学习率LEARNING_RATE_DECAY = 0.99 # 学习率衰减率 REGULARIZATION_RATE = 0.0001 # 正则化项系数TRAINING_STEPS = 30000 # 训练轮数MOVING_AVG_DECAY = 0.99 # 滑动平均衰减率 # 定义一个辅助函数,给定神经网络的输入和所有参数,计算神经网络的前向传播结果def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2): # 当没有提供滑动平均类时,直接使用参数当前取值 if avg_class == None: # 计算隐藏层前向传播结果 layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1) # 计算输出层前向传播结果 return tf.matmul(layer1, weights2) + biases2 else: # 首先计算变量的滑动平均值,然后计算前向传播结果 layer1 = tf.nn.relu( tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1)) return tf.matmul( layer1, avg_class.average(weights2)) + avg_class.average(biases2) # 训练模型的过程def train(mnist): x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input') y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input') # 生成隐藏层参数 weights1 = tf.Variable( tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1)) biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE])) # 生成输出层参数 weights2 = tf.Variable( tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1)) biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE])) # 计算前向传播结果,不使用参数滑动平均值 avg_class=None y = inference(x, None, weights1, biases1, weights2, biases2) # 定义训练轮数变量,指定为不可训练 global_step = tf.Variable(0, trainable=False) # 给定滑动平均衰减率和训练轮数的变量,初始化滑动平均类 variable_avgs = tf.train.ExponentialMovingAverage( MOVING_AVG_DECAY, global_step) # 在所有代表神经网络参数的可训练变量上使用滑动平均 variables_avgs_op = variable_avgs.apply(tf.trainable_variables()) # 计算使用滑动平均值后的前向传播结果 avg_y = inference(x, variable_avgs, weights1, biases1, weights2, biases2) # 计算交叉熵作为损失函数 cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=y, labels=tf.argmax(y_, 1)) cross_entropy_mean = tf.reduce_mean(cross_entropy) # 计算L2正则化损失函数 regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE) regularization = regularizer(weights1) + regularizer(weights2) loss = cross_entropy_mean + regularization # 设置指数衰减的学习率 learning_rate = tf.train.exponential_decay( LEARNING_RATE_BASE, global_step, # 当前迭代轮数 mnist.train.num_examples / BATCH_SIZE, # 过完所有训练数据的迭代次数 LEARNING_RATE_DECAY) # 优化损失函数 train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize( loss, global_step=global_step) # 反向传播同时更新神经网络参数及其滑动平均值 with tf.control_dependencies([train_step, variables_avgs_op]): train_op = tf.no_op(name='train') # 检验使用了滑动平均模型的神经网络前向传播结果是否正确 correct_prediction = tf.equal(tf.argmax(avg_y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 初始化会话并开始训练 with tf.Session() as sess: tf.global_variables_initializer().run() # 准备验证数据,用于判断停止条件和训练效果 validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels} # 准备测试数据,用于模型优劣的最后评价标准 test_feed = {x: mnist.test.images, y_: mnist.test.labels} # 迭代训练神经网络 for i in range(TRAINING_STEPS): if i%1000 == 0: validate_acc = sess.run(accuracy, feed_dict=validate_feed) print("After %d training step(s), validation accuracy using average " "model is %g " % (i, validate_acc)) xs, ys = mnist.train.next_batch(BATCH_SIZE) sess.run(train_op, feed_dict={x: xs, y_: ys}) # 训练结束后在测试集上检测模型的最终正确率 test_acc = sess.run(accuracy, feed_dict=test_feed) print("After %d training steps, test accuracy using average model " "is %g " % (TRAINING_STEPS, test_acc)) # 主程序入口def main(argv=None): mnist = input_data.read_data_sets("/tmp/data", one_hot=True) train(mnist) # Tensorflow主程序入口if __name__ == '__main__': tf.app.run()

分 分又称作分钟,是时间的量度单位。分的英语是minute,原意是“微小”的意思,也表示min。

输出结果如下:

目前ios9以下的系统验证均已被关闭了(包括ios8、ios7),被苹果关闭验证的版本将不再支持用户刷机至该版本,只能往上升级不能往下降级的。苹果的升级刷机规则很明确,因为ios刷机的时候是需要

Extracting /tmp/data/train-images-idx3-ubyte.gzExtracting /tmp/data/train-labels-idx1-ubyte.gzExtracting /tmp/data/t10k-images-idx3-ubyte.gzExtracting /tmp/data/t10k-labels-idx1-ubyte.gzAfter 0 training step(s), validation accuracy using average model is 0.0462 After 1000 training step(s), validation accuracy using average model is 0.9784 After 2000 training step(s), validation accuracy using average model is 0.9806 After 3000 training step(s), validation accuracy using average model is 0.9798 After 4000 training step(s), validation accuracy using average model is 0.9814 After 5000 training step(s), validation accuracy using average model is 0.9826 After 6000 training step(s), validation accuracy using average model is 0.9828 After 7000 training step(s), validation accuracy using average model is 0.9832 After 8000 training step(s), validation accuracy using average model is 0.9838 After 9000 training step(s), validation accuracy using average model is 0.983 After 10000 training step(s), validation accuracy using average model is 0.9836 After 11000 training step(s), validation accuracy using average model is 0.9822 After 12000 training step(s), validation accuracy using average model is 0.983 After 13000 training step(s), validation accuracy using average model is 0.983 After 14000 training step(s), validation accuracy using average model is 0.9844 After 15000 training step(s), validation accuracy using average model is 0.9832 After 16000 training step(s), validation accuracy using average model is 0.9844 After 17000 training step(s), validation accuracy using average model is 0.9842 After 18000 training step(s), validation accuracy using average model is 0.9842 After 19000 training step(s), validation accuracy using average model is 0.9838 After 20000 training step(s), validation accuracy using average model is 0.9834 After 21000 training step(s), validation accuracy using average model is 0.9828 After 22000 training step(s), validation accuracy using average model is 0.9834 After 23000 training step(s), validation accuracy using average model is 0.9844 After 24000 training step(s), validation accuracy using average model is 0.9838 After 25000 training step(s), validation accuracy using average model is 0.9834 After 26000 training step(s), validation accuracy using average model is 0.984 After 27000 training step(s), validation accuracy using average model is 0.984 After 28000 training step(s), validation accuracy using average model is 0.9836 After 29000 training step(s), validation accuracy using average model is 0.9842 After 30000 training steps, test accuracy using average model is 0.9839

该市名称“Minneapolis”的命名者是该市第一7a686964616fe4b893e5b19e31333330333037位学校教师(schoolteacher),他将达科他语中表示水的词“mni”和希腊语表示城市的词“polis”组合成该市的名称。

你好,激活电子copy水泵的步骤如下:、加满防冻液后,水箱盖开启状态,然后插入钥匙,接通点火开关(不启动发动机,但是要通电2113)2、空调暖风模式,温度调制最高,风量5261调制最小3、行车灯开启状态,即大灯开关往右拨一档4、油门踩到底,约10秒,就会听4102到电子水泵工作的声音了,谢谢1653【汽车问题,问汽车大师。4S店专业技师,10分钟解决内容来自www.zgxue.com请勿采集。


  • 本文相关:
  • tensorflow实现训练变量checkpoint的保存与读取
  • tensorflow训练模型越来越慢的2种解决方案
  • tensorflow实现保存训练模型为pd文件并恢复
  • 解决tensorflow训练内存不断增长,进程被杀死问题
  • tensorflow获取预训练模型某层参数并赋值到当前网络指定层方式
  • tensorflow模型继续训练 fineturn实例
  • tensorflow如何继续训练之前保存的模型实例
  • tensorflow实现在训练好的模型上进行测试
  • tensorflow保持每次训练结果一致的简单实现
  • python检测是文件还是目录的方法
  • python中一些不为人知的基础技巧总结
  • python sorted方法和列表使用解析
  • python 可爱的大小写
  • pytorch加载自定义网络权重的实现
  • python-pyinstaller、打包后获取路径的实例
  • 同时安装python2 & python3 cmd下版本自由选择的方法
  • python基于tcp实现的文件下载器功能案例
  • python中count函数简单的实例讲解
  • python+pika+rabbitmq环境部署及实现工作队列的实例教程
  • 宝马3系325防冻液电子水泵排气方法
  • 城市轨道交通里机车的惰行问题
  • 我昨天手贱,点出了什么MMI码已完成,这个怎么关掉阿
  • 宝马x5换水泵如何排气
  • 宝马MNI保养问题
  • mni在健身中是什么意思?
  • lpAd mni怎降级
  • 明尼阿波利是哪个州的?
  • 棒球帽和高尔夫球帽有什么分别
  • mni是什么意识
  • 网站首页网页制作脚本下载服务器操作系统网站运营平面设计媒体动画电脑基础硬件教程网络安全vbsdos/bathtahtcpythonperl游戏相关vba远程脚本coldfusionruby专题autoitseraphzonepowershelllinux shellluagolangerlang其它首页tensorflow实现训练变量checkpoint的保存与读取tensorflow训练模型越来越慢的2种解决方案tensorflow实现保存训练模型为pd文件并恢复解决tensorflow训练内存不断增长,进程被杀死问题tensorflow获取预训练模型某层参数并赋值到当前网络指定层方式tensorflow模型继续训练 fineturn实例tensorflow如何继续训练之前保存的模型实例tensorflow实现在训练好的模型上进行测试tensorflow保持每次训练结果一致的简单实现python检测是文件还是目录的方法python中一些不为人知的基础技巧总结python sorted方法和列表使用解析python 可爱的大小写pytorch加载自定义网络权重的实现python-pyinstaller、打包后获取路径的实例同时安装python2 & python3 cmd下版本自由选择的方法python基于tcp实现的文件下载器功能案例python中count函数简单的实例讲解python+pika+rabbitmq环境部署及实现工作队列的实例教程python入门教程 超详细1小时学会python 列表(list)操作方法详解python 元组(tuple)操作详解python 字典(dictionary)操作详解pycharm 使用心得(一)安装和首python strip()函数 介绍python 中文乱码问题深入分析python中使用xlrd、xlwt操作excepython科学计算环境推荐——anacpython逐行读取文件内容的三种方利用python脚本实现ping百度和google的方使用python的turtle绘制哆啦a梦实例python版简单工厂模式python3+selenium实现qq邮箱登陆并发送邮python wxpython库core组件boxsizer用法示python中__call__用法实例浅谈五大python web框架django实现简单分页功能的方法详解python实现windows下文件备份脚本对numpy中的transpose和swapaxes函数详解
    免责声明 - 关于我们 - 联系我们 - 广告联系 - 友情链接 - 帮助中心 - 频道导航
    Copyright © 2017 www.zgxue.com All Rights Reserved