机器学习背后的数学支柱,这5本书帮你搞定!

来源:TECHWEB  责任编辑:小易  

机器学习背后的数学基础,假设有了高中数学基础,正常再学习也要5年,所以如果一个人真的零基础,补起来实在太久,成本大到不应该入这行。至于教的时候是否使用形象比喻生活例子,其实不重要,因为数学就是脱离现实的,只有靠笔头计算才能掌握起来。如果只有编程基础,但搞不了数学,也可以做点其他的事,比如开发系统,虽然人工智能核心是算法,但相关系统的基础设施建设也是很缺的,可以考虑给它们做系统www.zgxue.com防采集请勿采集本网。

本文转载自公众号“读芯术”(ID:AI_Discovery)。

无独有偶,在这一年的八月,人们在研究魔方背后的数学问题上也取得了重要进展。在本文中,我们就来介绍一下魔方以及它背后的数学问题。一.风靡世界的玩具 1974 年春天,匈牙利布达佩斯应用艺术学院

机器学习从只适用于研发人员的工具变成了被广泛采纳使用的方法,多亏了开源机器学习和深度学习框架的爆炸性发展。现如今,机器学习领域比以往任何时候都更容易上手。同时,这也助力了我们目前所经历的科技的疯狂发展。

深度学习是机器学习的方向和领域之一,机器学习又是人工智能的方向和领域之一。具体他们分别研究哪些问题一篇文章很难讲清楚哩。不过大多数人都推荐图灵的那篇论文作为研究起点。目前深度学习

弄清算法是如何真正工作的,可以帮助你在设计、开发和调试机器学习系统方面获得巨大优势。很多人提到数学就打哆嗦,机器学习恰巧涉及很多数学知识,这项任务可能会令很多人怯步。

自己有很多兴趣,作为一个人,一个完整的人,一个明白的人,当然不应该同机器一样,让自己的兴趣被平白无故抹煞,那样不仅悲惨而且无知,但是,如果因为自己的兴趣严重耽搁了学习就不好了,不仅不好,有

然而,数学并不该成为人们在机器学习领域的“绊脚石”。相反,学好数学对于掌握机器学习非常有必要。从高层次上讲,机器学习中涉及四大数学支柱:线性代数、概率论、多元微积分、最优化理论。

为这些核心理论构建牢固基础,了解最先进的机器学习算法(例如卷积网络、生成式对抗网络等)的内部工作原理,我们需要为此付出时间,这并不是用一个下午能搞定的事情。

但鉴于你不断为此付出时间,也能够在短时间内便学到不少知识。在本文中,我选择了五本对我最有帮助的书籍,希望对你也会有帮助。

1. 《线性代数应该这样学》——谢尔顿·阿克斯勒

机器学习背后的数学支柱,这5本书帮你搞定

如果以“传统”方式讲授线性代数(先学习行列式和矩阵,再学习向量空间),对初学者而言太难了,线性代数将成为一门美丽却艰难的学科。

当我们把教学顺序调换一下,这门课程会变得十分直观和清晰。本书以非常友好和有见地的方式介绍了线性代数。多希望我最初是通过这本书学习的线性代数而不是老方法。

2. 《与深度学习神交》——安德鲁·特拉斯克

机器学习背后的数学支柱,这5本书帮你搞定

这本书是这个清单中我最喜欢的一本。如果你只有阅读一本书的时间,一定不要错过这本。

本书包含了对神经网络内部工作原理的完整实操介绍,选取了代码片段作为所有素材。尽管这本书并非专门针对高等数学,但读过这本书后,你对深度学习数学知识的了解将多于95%的数据科学家、机器学习工程师和其他开发人员。

你还可以从头开始构建神经网络,这或许是最佳的练习方法。当用机器学习开始构建神经网络时,我也曾使用NumPy从零开始构建了卷积网络。

3. 《概率论:给满腔热忱的初学者》——大卫·莫林

机器学习背后的数学支柱,这5本书帮你搞定

大多数有关机器学习的书籍都没有正确地介绍概率论,而是充满了令人困惑的符号,且经常混淆密度函数和离散分布。读者如果没有扎实的概率论背景知识是很难理解的。

而本书将为你带来对概率论详细、正确且简单清晰的介绍。这适用于之前对概率论没有任何了解的学习者。

4. 《多变量微积分》——丹尼斯·奥鲁 (来自麻省理工学院开放式课程)

这并不是一本书,而是麻省理工学院一门有关多变量微积分并可对公众开放的大学录制课。在我所知道的所有资源中,这门课程是迄今为止对该主题的最佳介绍。

对于有单变量微积分背景知识的听课者来说,这门课程能够锦上添花,即便没有,听课者也能够轻松跟上。它唯一的缺点是没能很好地介绍到的知识点是梯度下降算法,而这是神经网络的基础。

5. 《深度学习》——伊恩·古德费洛、约舒亚·本吉奥与亚伦·库维尔

机器学习背后的数学支柱,这5本书帮你搞定

这本书由机器学习领域中一些最有才华的人撰写而成,包含了上述的所有理论,是深度学习研究人员和开发人员的首选资源。该书综合了数学理论并使用了重型机器,为诸如卷积和递归网络、自动编码器等最新深度学习方法提供了可靠指导。

最棒的一点是大家可以在线上免费阅读这本书(https://www.deeplearningbook.org/)。

在我罗列出的所有书目中,这本书可能是最难以理解的。理解深度学习需要从概率论的角度看待算法实在有些困难。

 

攻克这些书目肯定算不上轻松,或许会花费不少时间,但相信我,你一定会有所收获。积累知识是最好的投资。这些知识将为你构建机器学习系统带来巨大优势,更不用说机器学习背后的理论本身就是十分美好而迷人的。

 

近年来,有很多新型的机2113器学习技术受到人们的广泛关5261注,也在解4102决实际问题中,提供了有效的方案。这里,1653我们简单介绍一下深度学习、强化学习、对抗学习、对偶学习、迁移学习、分布式学习、以及元学习,让大家可以明确机器学习的方向都有哪些,这样再选择自己感兴趣或擅长的研究方向,我觉得这是非常理智的做法。▌深度学习不同于传统的机器学习方法,深度学习是一类端到端的学习方法。基于多层的非线性神经网络,深度学习可以从原始数据直接学习,自动抽取特征并逐层抽象,最终实现回归、分类或排序等目的。在深度学习的驱动下,人们在计算机视觉、语音处理、自然语言方面相继取得了突破,达到或甚至超过了人类水平。深度学习的成功主要归功于三大因素—大数据、大模型、大计算,因此这三个方向都是当前研究的热点。在过去的几十年中,很多不同的深度神经网络结构被提出,比如,卷积神经网络,被广泛应用于计算机视觉,如图像分类、物体识别、图像分割、视频分析等等;循环神经网络,能够对变长的序列数据进行处理,被广泛应用于自然语言理解、语音处理等;编解码模型(Encoder-Decoder)是深度学习中常见的一个框架,多用于图像或序列生成,例如比较热的机器翻译、文本摘要、图像描述(image captioning)问题。▌强化学习2016 年 3 月,DeepMInd 设计的基于深度卷积神经网络和强化学习的 AlphaGo 以 4:1 击败顶尖职业棋手李世乭,成为第一个不借助让子而击败围棋职业九段棋手的电脑程序。此次比赛成为AI历史上里程碑式的事件,也让强化学习成为机器学习领域的一个热点研究方向。强化学习是机器学习的一个子领域,研究智能体如何在动态系统或者环境中以“试错”的方式进行学习,通过与系统或环境进行交互获得的奖赏指导行为,从而最大化累积奖赏或长期回报。由于其一般性,该问题在许多其他学科中也进行了研究,例如博弈论、控制理论、运筹学、信息论、多智能体系统、群体智能、统计学和遗传算法。▌迁移学习迁移学习的目的是把为其他任务(称其为源任务)训练好的模型迁移到新的学习任务(称其为目标任务)中,帮助新任务解决训练样本不足等技术挑战。之所以可以这样做,是因为很多学习任务之间存在相关性(比如都是图像识别任务),因此从一个任务中总结出来的知识(模型参数)可以对解决另外一个任务有所帮助。迁移学习目前是机器学习的研究热点之一,还有很大的发展空间。▌对抗学习传统的深度生成模型存在一个潜在问题:由于最大化概率似然,模型更倾向于生成偏极端的数据,影响生成的效果。对抗学习利用对抗性行为(比如产生对抗样本或者对抗模型)来加强模型的稳定性,提高数据生成的效果。近些年来,利用对抗学习思想进行无监督学习的生成对抗网络(GAN)被成功应用到图像、语音、文本等领域,成为了无监督学习的重要技术之一。▌对偶学习对偶学习是一种新的学习范式,其基本思想是利用机器学习任务之间的对偶属性获得更有效的反馈/正则化,引导、加强学习过程,从而降低深度学习对大规模人工标注数据的依赖。对偶学习的思想已经被应用到机器学习很多问题里,包括机器翻译、图像风格转换、问题回答和生成、图像分类和生成、文本分类和生成、图像转文本和文本转图像等等。▌分布式学习分布式技术是机器学习技术的加速器,能够显著提高机器学习的训练效率、进一步增大其应用范围。当“分布式”遇到“机器学习”,不应只局限在对串行算法进行多机并行以及底层实现方面的技术,我们更应该基于对机器学习的完整理解,将分布式和机器学习更加紧密地结合在一起。▌元学习元学习(meta learning)是近年来机器学习领域的一个新的研究热点。字面上来理解,元学习就是学会如何学习,重点是对学习本身的理解和适应,而不仅仅是完成某个特定的学习任务。也就是说,一个元学习器需要能够评估自己的学习方法,并根据特定的学习任务对自己的学习方法进行调整内容来自www.zgxue.com请勿采集。


  • 本文相关:
  • 机器学习的研究方向有哪些,刚上研一,大方向是机器学习,有懂的人可以推荐介绍一个具体的研究方向,参考
  • 关于机器学习的数学基础问题?
  • 什么是STEAM教育
  • 人工智能,机器学习,统计学,数据挖掘之间有什么区别
  • 上帝之数
  • 人工智能,机器学习,深度学习是什么关系
  • 四年级数学考试反思150字 (150字的)
  • 机器学习算法和深度学习的区别?
  • 免责声明 - 关于我们 - 联系我们 - 广告联系 - 友情链接 - 帮助中心 - 频道导航
    Copyright © 2017 www.zgxue.com All Rights Reserved