需求
我想要在SpringBoot中采用一种与业务代码解耦合的方式,来实现数据的变更记录,记录的内容是新数据,如果是更新操作还得有旧数据内容。
经过调研发现,使用Canal来监听MySQL的binlog变化可以实现这个需求,可是在监听到变化后需要马上保存变更记录,除非再做一些逻辑处理,于是我又结合了RabbitMQ来处理保存变更记录的操作。
步骤
- 启动MySQL环境,并开启binlog
- 启动Canal环境,为其创建一个MySQL账号,然后以Slave的形式连接MySQL
- Canal服务模式设为TCP,用Java编写客户端代码,监听MySQL的binlog修改
- Canal服务模式设为RabbitMQ,启动RabbitMQ环境,配置Canal和RabbitMQ的连接,用消息队列去接收binlog修改事件
环境搭建
环境搭建基于docker-compose:
version: "3" services: mysql: network_mode: mynetwork container_name: mymysql ports: - 3306:3306 restart: always volumes: - /etc/localtime:/etc/localtime - /home/mycontainers/mymysql/data:/data - /home/mycontainers/mymysql/mysql:/var/lib/mysql - /home/mycontainers/mymysql/conf:/etc/mysql environment: - MYSQL_ROOT_PASSWORD=root command: --character-set-server=utf8mb4 --collation-server=utf8mb4_unicode_ci --log-bin=/var/lib/mysql/mysql-bin --server-id=1 --binlog-format=ROW --expire_logs_days=7 --max_binlog_size=500M image: mysql:5.7.20 rabbitmq: container_name: myrabbit ports: - 15672:15672 - 5672:5672 restart: always volumes: - /etc/localtime:/etc/localtime - /home/mycontainers/myrabbit/rabbitmq:/var/lib/rabbitmq network_mode: mynetwork environment: - RABBITMQ_DEFAULT_USER=admin - RABBITMQ_DEFAULT_PASS=123456 image: rabbitmq:3.8-management canal-server: container_name: canal-server restart: always ports: - 11110:11110 - 11111:11111 - 11112:11112 volumes: - /home/mycontainers/canal-server/conf/canal.properties:/home/admin/canal-server/conf/canal.properties - /home/mycontainers/canal-server/conf/instance.properties:/home/admin/canal-server/conf/example/instance.properties - /home/mycontainers/canal-server/logs:/home/admin/canal-server/logs network_mode: mynetwork depends_on: - mysql - rabbitmq # - canal-admin image: canal/canal-server:v1.1.5
我们需要修改下Canal环境的配置文件:canal.properties和instance.properties,映射Canal中的以下两个路径:
- /home/admin/canal-server/conf/canal.properties:配置文件中,canal.destinations意思是server上部署的instance列表,
- /home/admin/canal-server/conf/example/instance.properties:这里的/example是指instance即实例名,要和上面canal.properties内instance配置对应,canal会为实例创建对应的文件夹,一个Client对应一个实例
以下是我们需要准备的两个配置文件具体内容:
canal.properties
################################################# ######### common argument ############# ################################################# # tcp bind ip canal.ip = # register ip to zookeeper canal.register.ip = canal.port = 11111 canal.metrics.pull.port = 11112 # canal instance user/passwd # canal.user = canal # canal.passwd = E3619321C1A937C46A0D8BD1DAC39F93B27D4458 # canal admin config # canal.admin.manager = canal-admin:8089 # canal.admin.port = 11110 # canal.admin.user = admin # canal.admin.passwd = 6BB4837EB74329105EE4568DDA7DC67ED2CA2AD9 # admin auto register 自动注册 # canal.admin.register.auto = true # 集群名,单机则不写 # canal.admin.register.cluster = # Canal Server 名字 # canal.admin.register.name = canal-admin canal.zkServers = # flush data to zk canal.zookeeper.flush.period = 1000 canal.withoutNetty = false # tcp, kafka, rocketMQ, rabbitMQ, pulsarMQ canal.serverMode = tcp # flush meta cursor/parse position to file canal.file.data.dir = ${canal.conf.dir} canal.file.flush.period = 1000 ## memory store RingBuffer size, should be Math.pow(2,n) canal.instance.memory.buffer.size = 16384 ## memory store RingBuffer used memory unit size , default 1kb canal.instance.memory.buffer.memunit = 1024 ## meory store gets mode used MEMSIZE or ITEMSIZE canal.instance.memory.batch.mode = MEMSIZE canal.instance.memory.rawEntry = true ## detecing config canal.instance.detecting.enable = false #canal.instance.detecting.sql = insert into retl.xdual values(1,now()) on duplicate key update x=now() canal.instance.detecting.sql = select 1 canal.instance.detecting.interval.time = 3 canal.instance.detecting.retry.threshold = 3 canal.instance.detecting.heartbeatHaEnable = false # support maximum transaction size, more than the size of the transaction will be cut into multiple transactions delivery canal.instance.transaction.size = 1024 # mysql fallback connected to new master should fallback times canal.instance.fallbackIntervalInSeconds = 60 # network config canal.instance.network.receiveBufferSize = 16384 canal.instance.network.sendBufferSize = 16384 canal.instance.network.soTimeout = 30 # binlog filter config canal.instance.filter.druid.ddl = true canal.instance.filter.query.dcl = false canal.instance.filter.query.dml = false canal.instance.filter.query.ddl = false canal.instance.filter.table.error = false canal.instance.filter.rows = false canal.instance.filter.transaction.entry = false canal.instance.filter.dml.insert = false canal.instance.filter.dml.update = false canal.instance.filter.dml.delete = false # binlog format/image check canal.instance.binlog.format = ROW,STATEMENT,MIXED canal.instance.binlog.image = FULL,MINIMAL,NOBLOB # binlog ddl isolation canal.instance.get.ddl.isolation = false # parallel parser config canal.instance.parser.parallel = true ## concurrent thread number, default 60% available processors, suggest not to exceed Runtime.getRuntime().availableProcessors() canal.instance.parser.parallelThreadSize = 16 ## disruptor ringbuffer size, must be power of 2 canal.instance.parser.parallelBufferSize = 256 # table meta tsdb info canal.instance.tsdb.enable = true canal.instance.tsdb.dir = ${canal.file.data.dir:../conf}/${canal.instance.destination:} canal.instance.tsdb.url = jdbc:h2:${canal.instance.tsdb.dir}/h2;CACHE_SIZE=1000;MODE=MYSQL; canal.instance.tsdb.dbUsername = canal canal.instance.tsdb.dbPassword = canal # dump snapshot interval, default 24 hour canal.instance.tsdb.snapshot.interval = 24 # purge snapshot expire , default 360 hour(15 days) canal.instance.tsdb.snapshot.expire = 360 ################################################# ######### destinations ############# ################################################# canal.destinations = canal-exchange # conf root dir canal.conf.dir = ../conf # auto scan instance dir add/remove and start/stop instance canal.auto.scan = true canal.auto.scan.interval = 5 # set this value to 'true' means that when binlog pos not found, skip to latest. # WARN: pls keep 'false' in production env, or if you know what you want. canal.auto.reset.latest.pos.mode = false canal.instance.tsdb.spring.xml = classpath:spring/tsdb/h2-tsdb.xml #canal.instance.tsdb.spring.xml = classpath:spring/tsdb/mysql-tsdb.xml canal.instance.global.mode = spring canal.instance.global.lazy = false canal.instance.global.manager.address = ${canal.admin.manager} #canal.instance.global.spring.xml = classpath:spring/memory-instance.xml canal.instance.global.spring.xml = classpath:spring/file-instance.xml #canal.instance.global.spring.xml = classpath:spring/default-instance.xml ################################################## ######### MQ Properties ############# ################################################## # aliyun ak/sk , support rds/mq canal.aliyun.accessKey = canal.aliyun.secretKey = canal.aliyun.uid= canal.mq.flatMessage = true canal.mq.canalBatchSize = 50 canal.mq.canalGetTimeout = 100 # Set this value to "cloud", if you want open message trace feature in aliyun. canal.mq.accessChannel = local canal.mq.database.hash = true canal.mq.send.thread.size = 30 canal.mq.build.thread.size = 8 ################################################## ######### Kafka ############# ################################################## kafka.bootstrap.servers = 127.0.0.1:9092 kafka.acks = all kafka.compression.type = none kafka.batch.size = 16384 kafka.linger.ms = 1 kafka.max.request.size = 1048576 kafka.buffer.memory = 33554432 kafka.max.in.flight.requests.per.connection = 1 kafka.retries = 0 kafka.kerberos.enable = false kafka.kerberos.krb5.file = "../conf/kerberos/krb5.conf" kafka.kerberos.jaas.file = "../conf/kerberos/jaas.conf" ################################################## ######### RocketMQ ############# ################################################## rocketmq.producer.group = test rocketmq.enable.message.trace = false rocketmq.customized.trace.topic = rocketmq.namespace = rocketmq.namesrv.addr = 127.0.0.1:9876 rocketmq.retry.times.when.send.failed = 0 rocketmq.vip.channel.enabled = false rocketmq.tag = ################################################## ######### RabbitMQ ############# ################################################## rabbitmq.host = myrabbit rabbitmq.virtual.host = / rabbitmq.exchange = canal-exchange rabbitmq.username = admin rabbitmq.password = RabbitMQ密码 rabbitmq.deliveryMode = ################################################## ######### Pulsar ############# ################################################## pulsarmq.serverUrl = pulsarmq.roleToken = pulsarmq.topicTenantPrefix =
此时canal.serverMode = tcp,即TCP直连,我们先开启这个服务,然后手写Java客户端代码去连接它,等下再改为RabbitMQ。
通过注释可以看到,canal支持的服务模式有:tcp, kafka, rocketMQ, rabbitMQ, pulsarMQ,即主流的消息队列都支持。
instance.properties
################################################# ## mysql serverId , v1.0.26+ will autoGen #canal.instance.mysql.slaveId=123 # enable gtid use true/false canal.instance.gtidon=false # position info canal.instance.master.address=mymysql:3306 canal.instance.master.journal.name= canal.instance.master.position= canal.instance.master.timestamp= canal.instance.master.gtid= # rds oss binlog canal.instance.rds.accesskey= canal.instance.rds.secretkey= canal.instance.rds.instanceId= # table meta tsdb info canal.instance.tsdb.enable=true #canal.instance.tsdb.url=jdbc:mysql://127.0.0.1:3306/canal_tsdb #canal.instance.tsdb.dbUsername=canal #canal.instance.tsdb.dbPassword=canal #canal.instance.standby.address = #canal.instance.standby.journal.name = #canal.instance.standby.position = #canal.instance.standby.timestamp = #canal.instance.standby.gtid= # username/password canal.instance.dbUsername=canal canal.instance.dbPassword=canal canal.instance.connectionCharset = UTF-8 # enable druid Decrypt database password canal.instance.enableDruid=false #canal.instance.pwdPublicKey=MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBALK4BUxdDltRRE5/zXpVEVPUgunvscYFtEip3pmLlhrWpacX7y7GCMo2/JM6LeHmiiNdH1FWgGCpUfircSwlWKUCAwEAAQ== # table regex canal.instance.filter.regex=.*\..* # table black regex canal.instance.filter.black.regex=mysql\.slave_.* # table field filter(format: schema1.tableName1:field1/field2,schema2.tableName2:field1/field2) #canal.instance.filter.field=test1.t_product:id/subject/keywords,test2.t_company:id/name/contact/ch # table field black filter(format: schema1.tableName1:field1/field2,schema2.tableName2:field1/field2) #canal.instance.filter.black.field=test1.t_product:subject/product_image,test2.t_company:id/name/contact/ch # mq config canal.mq.topic=canal-routing-key # dynamic topic route by schema or table regex #canal.mq.dynamicTopic=mytest1.user,topic2:mytest2\..*,.*\..* canal.mq.partition=0 # hash partition config #canal.mq.enableDynamicQueuePartition=false #canal.mq.partitionsNum=3 #canal.mq.dynamicTopicPartitionNum=test.*:4,mycanal:6 #canal.mq.partitionHash=test.table:id^name,.*\..* #################################################
把这两个配置文件映射好,再次提醒,注意实例的路径名,默认是:/example/instance.properties
修改canal配置文件
我们需要修改这个实例配置文件,去连接MySQL,确保以下的配置正确:
canal.instance.master.address=mymysql:3306 canal.instance.dbUsername=canal canal.instance.dbPassword=canal
mymysql是同为docker容器的MySQL环境,端口3306是指内部端口。
这里多说明一下,docker端口配置时假设为:13306:3306,那么容器对外的端口就是13306,内部是3306,在本示例中,MySQL和Canal都是容器环境,所以Canal连接MySQL需要满足以下条件:
- 处于同一网段(docker-compose.yml中的mynetwork)
- 访问内部端口(即3306,而非13306)
dbUsername和dbPassword为MySQL账号密码,为了开发方便可以使用root/root,但是我仍建议自行创建用户并分配访问权限:
# 进入docker中的mysql容器 docker exec -it mymysql bash # 进入mysql指令模式 mysql -uroot -proot # 编写MySQL语句并执行 > ...
-- 选择mysql use mysql; -- 创建canal用户,账密:canal/canal create user 'canal'@'%' identified by 'canal'; -- 分配权限,以及允许所有主机登录该用户 grant SELECT, INSERT, UPDATE, DELETE, REPLICATION SLAVE, REPLICATION CLIENT on *.* to 'canal'@'%'; -- 刷新一下使其生效 flush privileges; -- 附带一个删除用户指令 drop user 'canal'@'%';
用navicat或者shell去登录canal这个用户,可以访问即创建成功
整合SpringBoot Canal实现客户端
Maven依赖:
<canal.version>1.1.5</canal.version> <!--canal--> <dependency> <groupId>com.alibaba.otter</groupId> <artifactId>canal.client</artifactId> <version>${canal.version}</version> </dependency> <dependency> <groupId>com.alibaba.otter</groupId> <artifactId>canal.protocol</artifactId> <version>${canal.version}</version> </dependency>
新增组件并启动:
import com.alibaba.otter.canal.client.CanalConnector; import com.alibaba.otter.canal.client.CanalConnectors; import com.alibaba.otter.canal.protocol.CanalEntry; import com.alibaba.otter.canal.protocol.Message; import org.springframework.boot.CommandLineRunner; import org.springframework.stereotype.Component; import java.net.InetSocketAddress; import java.util.List; @Component public class CanalClient { private final static int BATCH_SIZE = 1000; public void run() { // 创建链接 CanalConnector connector = CanalConnectors.newSingleConnector(new InetSocketAddress("localhost", 11111), "canal-exchange", "canal", "canal"); try { //打开连接 connector.connect(); //订阅数据库表,全部表 connector.subscribe(".*\..*"); //回滚到未进行ack的地方,下次fetch的时候,可以从最后一个没有ack的地方开始拿 connector.rollback(); while (true) { // 获取指定数量的数据 Message message = connector.getWithoutAck(BATCH_SIZE); //获取批量ID long batchId = message.getId(); //获取批量的数量 int size = message.getEntries().size(); //如果没有数据 if (batchId == -1 || size == 0) { try { //线程休眠2秒 Thread.sleep(2000); } catch (InterruptedException e) { e.printStackTrace(); } } else { //如果有数据,处理数据 printEntry(message.getEntries()); } //进行 batch id 的确认。确认之后,小于等于此 batchId 的 Message 都会被确认。 connector.ack(batchId); } } catch (Exception e) { e.printStackTrace(); } finally { connector.disconnect(); } } /** * 打印canal server解析binlog获得的实体类信息 */ private static void printEntry(List<CanalEntry.Entry> entrys) { for (CanalEntry.Entry entry : entrys) { if (entry.getEntryType() == CanalEntry.EntryType.TRANSACTIONBEGIN || entry.getEntryType() == CanalEntry.EntryType.TRANSACTIONEND) { //开启/关闭事务的实体类型,跳过 continue; } //RowChange对象,包含了一行数据变化的所有特征 //比如isDdl 是否是ddl变更操作 sql 具体的ddl sql beforeColumns afterColumns 变更前后的数据字段等等 CanalEntry.RowChange rowChage; try { rowChage = CanalEntry.RowChange.parseFrom(entry.getStoreValue()); } catch (Exception e) { throw new RuntimeException("ERROR ## parser of eromanga-event has an error , data:" + entry.toString(), e); } //获取操作类型:insert/update/delete类型 CanalEntry.EventType eventType = rowChage.getEventType(); //打印Header信息 System.out.println(String.format("================》; binlog[%s:%s] , name[%s,%s] , eventType : %s", entry.getHeader().getLogfileName(), entry.getHeader().getLogfileOffset(), entry.getHeader().getSchemaName(), entry.getHeader().getTableName(), eventType)); //判断是否是DDL语句 if (rowChage.getIsDdl()) { System.out.println("================》;isDdl: true,sql:" + rowChage.getSql()); } //获取RowChange对象里的每一行数据,打印出来 for (CanalEntry.RowData rowData : rowChage.getRowDatasList()) { //如果是删除语句 if (eventType == CanalEntry.EventType.DELETE) { printColumn(rowData.getBeforeColumnsList()); //如果是新增语句 } else if (eventType == CanalEntry.EventType.INSERT) { printColumn(rowData.getAfterColumnsList()); //如果是更新的语句 } else { //变更前的数据 System.out.println("------->; before"); printColumn(rowData.getBeforeColumnsList()); //变更后的数据 System.out.println("------->; after"); printColumn(rowData.getAfterColumnsList()); } } } } private static void printColumn(List<CanalEntry.Column> columns) { for (CanalEntry.Column column : columns) { System.out.println(column.getName() + " : " + column.getValue() + " update=" + column.getUpdated()); } } }
启动类Application:
@SpringBootApplication public class BaseApplication implements CommandLineRunner { @Autowired private CanalClient canalClient; @Override public void run(String... args) throws Exception { canalClient.run(); } }
启动程序,此时新增或修改数据库中的数据,我们就能从客户端中监听到
不过我建议监听的信息放到消息队列中,在空闲的时候去处理,所以直接配置Canal整合RabbitMQ更好。
Canal整合RabbitMQ
修改canal.properties中的serverMode:
canal.serverMode = rabbitMQ
修改instance.properties中的topic:
canal.mq.topic=canal-routing-key
然后找到关于RabbitMQ的配置:
################################################## ######### RabbitMQ ############# ################################################## # 连接rabbit,写IP,因为同个网络下,所以可以写容器名 rabbitmq.host = myrabbit rabbitmq.virtual.host = / # 交换器名称,等等我们要去手动创建 rabbitmq.exchange = canal-exchange # 账密 rabbitmq.username = admin rabbitmq.password = 123456 # 暂不支持指定端口,使用的是默认的5762,好在在本示例中适用
重新启动容器,进入RabbitMQ管理页面创建exchange交换器和队列queue:
- 新建exchange,命名为:canal-exchange
- 新建queue,命名为:canal-queue
- 绑定exchange和queue,routing-key设置为:canal-routing-key,这里对应上面instance.properties的canal.mq.topic
顺带一提,上面这段可以忽略,因为在SpringBoot的RabbitMQ配置中,会自动创建交换器exchange和队列queue,不过手动创建的话,可以在忽略SpringBoot的基础上,直接在RabbitMQ的管理页面上看到修改记录的消息。
SpringBoot整合RabbitMQ
依赖:
<amqp.version>2.3.4.RELEASE</amqp.version> <!--消息队列--> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-amqp</artifactId> <version>${amqp.version}</version> </dependency>
application.yml:
spring: rabbitmq: # host: myserverhost host: 192.168.0.108 port: 5672 username: admin password: RabbitMQ密码 # 消息确认配置项 # 确认消息已发送到交换机(Exchange) publisher-confirm-type: correlated # 确认消息已发送到队列(Queue) publisher-returns: true
RabbitMQ配置类:
@Configuration public class RabbitConfig { @Bean public RabbitTemplate rabbitTemplate(ConnectionFactory connectionFactory) { RabbitTemplate template = new RabbitTemplate(); template.setConnectionFactory(connectionFactory); template.setMessageConverter(new Jackson2JsonMessageConverter()); return template; } /** * template.setMessageConverter(new Jackson2JsonMessageConverter()); * 这段和上面这行代码解决RabbitListener循环报错的问题 */ @Bean public SimpleRabbitListenerContainerFactory rabbitListenerContainerFactory(ConnectionFactory connectionFactory) { SimpleRabbitListenerContainerFactory factory = new SimpleRabbitListenerContainerFactory(); factory.setConnectionFactory(connectionFactory); factory.setMessageConverter(new Jackson2JsonMessageConverter()); return factory; } }
Canal消息生产者:
public static final String CanalQueue = "canal-queue"; public static final String CanalExchange = "canal-exchange"; public static final String CanalRouting = "canal-routing-key";
/** * Canal消息提供者,canal-server生产的消息通过RabbitMQ消息队列发送 */ @Configuration public class CanalProvider { /** * 队列 */ @Bean public Queue canalQueue() { /** * durable:是否持久化,默认false,持久化队列:会被存储在磁盘上,当消息代理重启时仍然存在;暂存队列:当前连接有效 * exclusive:默认为false,只能被当前创建的连接使用,而且当连接关闭后队列即被删除。此参考优先级高于durable * autoDelete:是否自动删除,当没有生产者或者消费者使用此队列,该队列会自动删除 */ return new Queue(RabbitConstant.CanalQueue, true); } /** * 交换机,这里使用直连交换机 */ @Bean DirectExchange canalExchange() { return new DirectExchange(RabbitConstant.CanalExchange, true, false); } /** * 绑定交换机和队列,并设置匹配键 */ @Bean Binding bindingCanal() { return BindingBuilder.bind(canalQueue()).to(canalExchange()).with(RabbitConstant.CanalRouting); } }
Canal消息消费者:
/** * Canal消息消费者 */ @Component @RabbitListener(queues = RabbitConstant.CanalQueue) public class CanalComsumer { private final SysBackupService sysBackupService; public CanalComsumer(SysBackupService sysBackupService) { this.sysBackupService = sysBackupService; } @RabbitHandler public void process(Map<String, Object> msg) { System.out.println("收到canal消息:" + msg); boolean isDdl = (boolean) msg.get("isDdl"); // 不处理DDL事件 if (isDdl) { return; } // TiCDC的id,应该具有唯一性,先保存再说 int tid = (int) msg.get("id"); // TiCDC生成该消息的时间戳,13位毫秒级 long ts = (long) msg.get("ts"); // 数据库 String database = (String) msg.get("database"); // 表 String table = (String) msg.get("table"); // 类型:INSERT/UPDATE/DELETE String type = (String) msg.get("type"); // 每一列的数据值 List<?> data = (List<?>) msg.get("data"); // 仅当type为UPDATE时才有值,记录每一列的名字和UPDATE之前的数据值 List<?> old = (List<?>) msg.get("old"); // 跳过sys_backup,防止无限循环 if ("sys_backup".equalsIgnoreCase(table)) { return; } // 只处理指定类型 if (!"INSERT".equalsIgnoreCase(type) && !"UPDATE".equalsIgnoreCase(type) && !"DELETE".equalsIgnoreCase(type)) { return; } } }
测试一下,修改MySQL中的一条消息,Canal就会发送信息到RabbitMQ,我们就能从监听的RabbitMQ队列中得到该条消息。