您的当前位置:首页正文

浅谈太阳能电池的工作原理

2020-08-02 来源:个人技术集锦


浅谈太阳能电池的工作原理

太阳能是来自于太阳内部核聚变所释放的能量。据粗略统计,太阳的发光度,即太阳向宇宙全方位辐射的总能量流是4×10~(26)J/s。其中向地球输送的光和热可达2.5×10~(18)cal/min,相当于燃烧4×10~(8)T烟煤所产生的能量。一年中太阳辐射到地球表面的能量,相当于人类现有各种能源在同期内所提供能量的上万倍。所以,如何高效并且低成本的利用太阳能一直是近年来的研究热点。

一、太阳能电池的工作原理

太阳能之所以能转换成电能,是利用太阳光使电池发电形成的。太阳能电池发电的原理主要是半导体的光电效应,即光电材料吸收光能后发生光电子转换,然后在PN结作用下产生电动势,输出电能。电池器件其实就是一个大面积的PN结。

当P型和N型半导体结合在一起时,在两种半导体的交界面区域里会形成一个特殊的薄层界面,界面的P型一侧带负电,N型一侧带正电。这是由于P型半导体多空穴,N型半导体多自由电子,出现了浓度差。N区的电子会扩散到P区,P区的空穴会扩散到N区,一旦扩散就形成了一个由N指向P的内建电场,从而阻止扩散进行。达到平衡后,就形成了这样一个特殊的薄层形成电势差,这就是PN结。当太阳光照射这种半导体材料时,能量大于禁带宽度的光子在PN结两边的P区和N区发生本征吸收,从而激发产生很多的电子-空穴对即光生载流子,PN结界面附近的电子和空穴在复合之前,将在内建电场的作用下相互分离。电子向带正电的N区运动使得N区电子富集,空穴向带负电的P区运动使得P区空穴富集。整个PN结材料两端宏观表现出电势差,即光生电动势。当PN结材料两端连接成回路时,电路中出现电流。通过光照产生的电动势越大,回路中电流越大。

二、太阳能电池的种类 (一)硅系太阳能电池 1.单晶硅太阳能电池

硅系列太阳能电池中,单晶硅太阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成熟的加工处理工艺基础上的。现在单晶硅的电池工艺已近成熟,在电池制作中,一般都采用表面结构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。在这方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面结构化,制成倒金字塔结构。并在表面把一13nm厚的氧化物钝化层与两层减反射涂层相结合,通过改进了的电镀过程增加栅极的宽度和高度的比率,通过以上制得的电池转化效率超过23%,最大值可达23.3%。Kyocera公司制备的大面积(225cm~(2))单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm×2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm×5cm)转换效率达8.6%。

单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池不卞,响,致使单晶硅成本是非常困难的。要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。

2.多晶硅薄膜太阳能电池

通常的晶体硅太阳能电池是在厚度350μm~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成,因此实际消耗的硅材料更多。为了节省材料,从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒太小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等离子增强化学气相沉积(PECVD)工艺。此外,液相外延法(LPPE)和溅射沉积法也可用来制备多晶硅薄膜电池。

化学气相沉积主要是以SiH_(2)Cl_(2)、SiHCl_(3)、Sicl_(4)或SiH_(4)为反应气体,在一定的保护气氛下反应生成硅原子并沉积在加热的衬底上,衬底材料一般选用Si、SiO_(2)、Si_(3)N_(4)等。但研究发现,在非硅衬底上很难形成较大的晶粒,并且容易在晶粒间形成空隙。解决这一问题办法是先用LPCVD在衬底上沉积一层较薄的非晶硅层,再将这层非晶硅层退火,得到较大的晶粒,然后再在这层籽晶上沉积厚的多晶硅薄膜。因此,再结晶技术无疑是很重要的一个环节,目前采用的技术主要有固相结晶法和中区熔再结晶法。多晶硅薄膜电池除采用了再结晶工艺外,另外采用了几乎所有制备单晶硅太阳能电池的技术,这样制得的太阳能电池转换效率明显提高。德国费莱堡太阳能研究所采用区馆再结晶技术在FZ Si衬底上制得的多晶硅电池转换效率为19%。

液相外延(LPE)法的原理是通过将硅熔融在母体里,降低温度析出硅膜。美国Astropower公司采用LPE制备的电池效率达12.2%。中国光电发展技术中心采用液相外延法在冶金级硅片上生长出硅晶粒,并设计了一种类似于晶体硅薄膜太阳能电池的新型太阳能电池,称之为“硅粒”太阳能电池(但有关具体性能方面还未见报导)。

3.非晶硅薄膜太阳能电池

开发太阳能电池的两个关键问题就是:提高转换效率和降低成本。由于非晶硅薄膜太阳能电池的成本低,便于大规模生产,普遍受到人们的重视并得到迅速发展,其实早在70年代初,Carl-son等就已经开始了对非晶硅电池的研制工作,近几年它的研制工作得到了迅速发展,目前世界上已有许多家公司在生产该种电池产品。非晶硅作为太阳能材料尽管是一种很好的电池材料,但由于其光学带隙为17eV,使得材料本身对太阳辐射光谱的长波区域不敏感,这样一来就限制了非晶硅太阳能电池的转换效率。此外,其光电效率会随着光照时间的延续而衰减,即所谓的光致衰退S-W效应,使得电池性能不稳定。解决这些问题的途径就是制备叠层太阳能电池,叠层太阳能电池是由在制备的p、i、n层单结太阳能电池上再沉积一个或多个P-i-n子电池制得的。

叠层太阳能电池提高转换效率、解决单结电池不稳定性的关键问题在于(1)它把不同禁带宽度的材料组合在一起,提高了光谱的相应范围;(2)上层电池的i层较薄,光照产生的电场强度变化不大;(3)底电池产生的载流子约为单电池的一半,光致衰退效应减小;(4)叠层太阳能电池各子电池是串联在一起的。

非晶硅薄膜太阳能电池的制备方法有很多,其中包括反应溅射法、PECVD法、LPCVD法等,反应原料气体为H2稀释的SiH_(4),衬底主要为玻璃及不锈钢片,制成的非晶硅薄膜经过不同的电池工艺过程可分别制得单结电池和叠层太阳能电池。目前非晶硅太阳能电池的研究取得两大进展:第一、三叠层结构非晶硅太阳能电池转换效率达到13%,创下新的记录;第二、三叠层太阳能电池年生产能力达5mW。美国联合太阳能公司(VSSC)制得的单结太阳能电池最高转换效率为9.3%,三带隙三叠层电池最高转换效率为13%。上述最高转换效率是在小面积(0.25cm~(2))电池上取得的。曾有文献报道单结非晶硅太阳能电池转换效率超过12.5%,日本中央研究院采用一系列新措施,制得的非晶硅电池的转换效率

为13.2%。国内关于非晶硅薄膜电池特别是叠层太阳能电池的研究并不多,南开大学采用工业用材料,以铝背电极制备出面积为20×20cm~(2)、转换效率为8.28%的a-Si/a-Si叠层太阳能电池。

非晶硅太阳能电池由于具有较高的转换效率和较低的成本及重量轻等特点,有着极大的潜力。但同时由于它的稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,则非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。

(二)多元化合物薄膜太阳能电池

为了寻找单晶硅电池的替代品,人们除开发了多晶硅、非晶硅薄膜太阳能电池外,又不断研制其他材料的太阳能电池。其中主要包括砷化镓Ⅲ-Ⅴ族化合物、硫化镉、硫化镉及铜锢硒薄膜电池等。上述电池中,尽管硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。

砷化镓Ⅲ-Ⅴ化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。GaAs属于Ⅲ-Ⅴ族化合物半导体材料,其能隙为1.4eV,正好为高吸收率太阳光的值,因此,是很理想的电池材料。GaAs等Ⅲ-Ⅴ化合物薄膜电池的制备主要采用MOVPE和LPE技术,其中MOVPE方法制备GaAs薄膜电池受衬底位错、反应压力、Ⅲ-Ⅴ比率、总流量等诸多参数的影响。

除GaAs外,其他Ⅲ-Ⅴ化合物如Gasb、GaInP等电池材料也得到了开发。1998年德国研究所制得的GaAs太阳能电池转换效率为24.2%,为欧洲记录。首次制备的GaInP电池转换效率为14.7%。另外,该研究所还采用堆叠结构制备GaAs,Gasb电池,该电池

是将两个独立的电池堆叠在一起,GaAs作为上电池,下电池用的是Gasb,所得到的电池效率达到31.1%。

铜铟硒CuInSe2简称CIC。CIS材料的能降为1.1eV,适于太阳光的光电转换,另外,CIS薄膜太阳电池不存在光致衰退问题。因此,CIS用作高转换效率薄膜太阳能电池材料也引起了人们的瞩目。

CIS电池薄膜的制备主要有真空蒸镀法和硒化法。真空蒸镀法是采用各自的蒸发源蒸镀铜、铟和硒,硒化法是使用H2Se叠层膜硒化,但该法难以得到组成均匀的CIS。CIS薄膜电池从80年代最初8%的转换效率发展到目前的15%左右。日本松下电气工业公司开发的掺镓的CIS电池,其光电转换效率为15.3%(面积1cm~(2))。1995年美国可再生能源研究室研制出转换效率为17.1%的CIS太阳能电池,这是迄今为止世界上该电池的最高转换效率。预计到2000年CIS电池的转换效率将达到20%,相当于多晶硅太阳能电池。

CIS作为太阳能电池的半导体材料,具有价格低廉、性能良好和工艺简单等优点,将成为今后发展太阳能电池的一个重要方向。唯一的问题是材料的来源,由于铟和硒都是比较稀有的元素,因此,这类电池的发展又必然受到限制。

(三)聚合物多层修饰电极型太阳能电池

在太阳能电池中以聚合物代替无机材料是刚刚开始的研究方向。其原理是利用不同氧化还原型聚合物的不同氧化还原电势,在导电材料(电极)表面进行多层复合,制成类似无机P-N结的单向导电装置。其中一个电极的内层由还原电位较低的聚合物修饰,外层聚合物的还原电位较高,电子转移方向只能由内层向外层转移;另一个电极的修饰正好相反,并且第一个电极上两种聚合物的还原电位均高于后者的两种聚合物的还原电位。当两个修

饰电极放入含有光敏化剂的电解波中时,光敏化剂吸光后产生的电子转移到还原电位较低的电极上,还原电位较低电极上积累的电子不能向外层聚合物转移,只能通过外电路还原电位较高的电极回到电解液,因此外电路中有光电流产生。

由于有机材料具有柔性好、制作容易、材料来源广泛、成本低等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材料制备太阳能电池的研究仅仅刚开始,不论是使用寿命,还是电池效率都不能和无机材料特别是硅电池相比。能否发展成为具有实用意义的产品,还有待于进一步研究探索。

(四)纳米晶化学太阳能电池

在太阳能电池中硅系太阳能电池无疑是发展最成熟的,但由于成本居高不下,远不能满足大规模推广应用的要求。为此,人们一直不断在工艺、新材料、电池薄膜化等方面进行探索,而这当中新近发展的纳米TiO_(2)晶体化学能太阳能电池受到国内外科学家的重视。

自瑞士教授研制成功纳米TiO_(2)化学太阳能电池以来,国内一些单位也正在进行这方面的研究。纳米晶化学太阳能电池(简称NPC电池)是由一种在禁带半导体材料修饰、组装到另一种大能隙半导体材料上形成的,窄禁带半导体材料采用过渡金属Ru以及Os等的有机化合物敏化染料,大能隙半导体材料为纳米多晶TiO_(2)并制成电极,此外NPC电池还选用适当的氧化一还原电解质。

纳米晶TiO_(2)工作原理:染料分子吸收太阳光能跃迁到激发态,激发态不稳定,电子快速注入到紧邻的TiO_(2)导带,染料中失去的电子则很快从电解质中得到补偿,进入TiO_(2)导带中的电子最终进入导电膜,然后通过外回路产生光电流。

纳米晶TiO_(2)太阳能电池的优点在于它廉价的成本和简单的工艺及稳定的性能。其光电效率稳定在10%以上,制作成本仅为硅太阳电池的1/5~1/10,寿命能达到20年以上。但由于此类电池的研究和开发刚刚起步,估计不久的将来会逐步走上市场。

因篇幅问题不能全部显示,请点此查看更多更全内容

Top