AFFINESEMIGROUPS
WINFRIEDBRUNS,JOSEPHGUBELADZE,ANDNGO
ˆVIETˆTRUNGDedicatedtothememoryofGy¨orgyPoll´ak
(CommunicatedbyL´aszl´oM´arki)
1.INTRODUCTION
Affinesemigroups–discreteanaloguesofconvexpolyhedralcones–markthecross-roadsofalgebraicgeometry,commutativealgebraandintegerprogramming.Theycon-stitutethecombinatorialbackgroundforthetheoryoftoricvarieties,whichistheirmain
linktoalgebraicgeometry.InitiatedbytheworkofDemazure[De]andKempf,Knudsen,MumfordandSaint-Donat[KKMS]intheearly70s,toricgeometryisstillaveryactiveareaofresearch.
However,thelastdecadehasclearlywitnessedtheextensivestudyofaffinesemigroupsfromtheothertwoperspectives.Nodoubt,thisisduetothetremendouslyincreasedcomputationalpowerinalgebraicgeometry,implementedthroughthetheoryofGr¨obnerbases,and,ofcourse,tomoderncomputers.
Inthisarticleweoverviewthoseaspectsofthisdevelopmentthathavebeenrelevantforourownresearch,andposeseveralopenproblems.Answerstotheseproblemswouldcontributesubstantiallytothetheory.
Thepapertreatstwomaintopics:(1)affinesemigroupsandseveralcoveringproper-tiesforthemand(2)algebraicpropertiesforthecorrespondingrings(Koszul,Cohen-Macaulay,different“sizes”ofthedefiningbinomialideals).Weemphasizethespecialcasewhentheinitialdataareencodedintolatticepolytopes.Therelatedobjects–poly-topalsemigroupsandalgebras–providealinkwiththeclassicalthemeoftriangulationsintounimodularsimplices.
Wehavealsoincludedanalgorithmforcheckingthesemigroupcoveringpropertyinthemostgeneralsetting(Section4).Ourcounterexampletocertaincoveringconjectures(Section3)wasfoundbytheapplicationofasmallpartofthisalgorithm.Thegeneralalgorithmcouldbeusedforadeeperstudyofaffinesemigroups.
ThispaperisanexpandedversionofthetalksgivenbythefirstandthethirdauthorintheProblemsessionoftheColloquiumonSemigroupsheldinSzegedinJuly2000.
2
ˆVIETˆTRUNGWINFRIEDBRUNS,JOSEPHGUBELADZE,ANDNGO
2.AFFINE
ANDPOLYTOPALSEMIGROUPSANDTHEIRALGEBRAS
Weusethefollowingnotation:Z,Q,Raretheadditivegroupsofintegral,rational,and
realnumbers,respectively;Z+,Q+andR+denotethecorrespondingadditivesubsemi-groupsofnon-negativenumbers,andN={1,2,...}.
2.1.Affinesemigroups.Anaffinesemigroupisasemigroup(alwayscontaininganeu-tralelement)whichisfinitelygeneratedandcanbeembeddedinZnforsomen∈N.GroupsisomorphictoZnarecalledlatticesinthefollowing.
Wewritegp(S)forthegroupofdifferencesofS,i.e.gp(S)isthesmallestgroup(uptoisomorphism)whichcontainsS.
IfSiscontainedinthelatticeLasasubsemigroup,thenx∈LisintegraloverSifcx∈S
¯LofSinL.ObviouslyS¯Lforsomec∈N,andthesetofallsuchxistheintegralclosureS
isagainasemigroup.AsweshallseeinProposition2.1.1,itisevenanaffinesemigroup,andcanbedescribedingeometricterms.
ByaconeinarealvectorspaceV=RnwemeanasubsetCsuchthatCisclosedunderlinearcombinationswithnon-negativerealcoefficients.Aconeisfinitelygeneratedifandonlyifitistheintersectionoffinitelymanyvectorhalfspaces.(Sometimesasetoftheformz+Cwillalsobecalledacone.)IfCisgeneratedbyvectorswithrationalor,equivalently,integralcomponents,thenCiscalledrational.Thisisthecaseifandonlyifthehalfspacescanbedescribedbyhomogeneouslinearinequalitieswithrational(orintegral)coefficients.
ThisappliesespeciallytotheconeC(S)generatedbySintherealvectorspaceL⊗R:(∗)
C(S)={x∈L⊗R:σi(x)≥0,i=1,...,s}
wheretheσiarelinearformsonL⊗Rwithintegralcoefficients.
Proposition2.1.1.(a)(Gordan’slemma)LetC⊂L⊗Rbeafinitelygeneratedrational
cone(i.e.generatedbyfinitelymanyvectorsfromL⊗Q).ThenL∩CisanaffinesemigroupandintegrallyclosedinL.
(b)LetSbeanaffinesubsemigroupofthelatticeL.Then
¯L=L∩C(S);(i)S
¯LsuchthatS¯L=u(ii)thereexistz1,...,zu∈Si=1zi+S;
¯Lisanaffinesemigroup.(iii)SProof.(a)NotethatCisgeneratedbyfinitelymanyelementsx1,...,xm∈L.Letx∈L∩C.Thenx=a1x1+···+amxmwithnon-negativerationalai.Setbi=⌊ai⌋.Then(∗)
x=(b1x1+···+bmxm)+(r1x1+···+rmxm),
0≤ri<1.
ThesecondsummandliesintheintersectionofLwithaboundedsubsetofC.Thusthereareonlyfinitelymanychoicesforit.Theseelementstogetherwithx1,...,xmgenerateL∩C.ThatL∩CisintegrallyclosedinLisevident.
(b)SetC=C(S),andchooseasystemx1,...,xmofgeneratorsofS.Theneveryx∈L∩C
hasarepresentation(∗).Multiplicationbyacommondenominatorofr1,...,rm
¯L.Ontheotherhand,L∩Cisintegrallyclosedby(a)sothatshowsthatx∈S
¯L=L∩C.S
PROBLEMSANDALGORITHMSFORAFFINESEMIGROUPS3
Theelementsy1,...,yucannowbechosenasthevectorsr1x1+···+rmxmap-pearingin(∗).Theirnumberisfinitesincetheyareallintegralandcontainedina
¯LasaboundedsubsetofL⊗R.Togetherwithx1,...,xmtheycertainlygenerateS
semigroup.
Proposition2.1.1showsthatnormalaffinesemigroupscanalsobedefinedbyfinitelygeneratedrationalconesC:thesemigroupS(C)=L∩CisaffineandintegrallyclosedinL.
WeintroducespecialterminologyinthecaseinwhichL=gp(S).Thentheintegral
¯=S¯gp(S)iscalledthenormalization,andSisnormalifS=S¯.ClearlytheclosureS
semigroupsS(C)arenormal,andconversely,everynormalaffinesemigroupShassucharepresentation,sinceS=S(C(S))(ingp(S)).
SupposethatL=gp(S)andthatrepresentation(∗)ofC(S)isirredundant.Thenthelin-earformsσidescribeexactlythesupporthyperplanesofC(S),andarethereforeuniquelydetermineduptoamultiplebyanon-negativefactor.Wecanchoosethemtohaveco-primeintegralcoefficients,andthentheσiareuniquelydetermined.WecallthemthesupportformsofS,andwrite
WecallasemigroupSpositiveif0istheonlyinvertibleelementinS.Itiseasilyseen¯ispositiveaswellandthatpositivityisequivalenttothefactthatC(S)isapointedthatS
conewithapex0.Itiseasilyseenthatthemapσ:S→Zs+,σ(x)=(σ1(x),...,σs(x)),isanembeddingifSpositive.ItfollowsthateveryelementofScanbewrittenasthesumofuniquelydeterminedirreducibleelements.SinceSisfinitelygenerated,thesetofirreducibleelementsisalsofinite.ItconstitutestheHilbertbasisHilb(S)ofS;clearlyHilb(S)istheuniquelydeterminedminimalsystemofgeneratorsofS.ForafinitelygeneratedpositiverationalconeCwesetHilb(C)=Hilb(S(C)).
EspeciallyfornormalStheassumptionthatSispositiveisnotasevererestriction.Itiseasilyseenthatonehasasplitting
intothemaximalsubgroupS0ofSandapositivenormalaffinesemigroupS′,namelytheimageofSingp(S)/S0.
2.2.Semigroupalgebras.NowletKbeafield.Thenwecanformthesemigroupal-gebraK[S].SinceSisfinitelygeneratedasasemigroup,K[S]isfinitelygeneratedasaK-algebra.WhenanembeddingS→Znisgiven,itinducesanembeddingK[S]→K[Zn],anduponthechoiceofabasisinZn,thealgebraK[Zn]canbeidentifiedwiththeLaurentpolynomialringK[T1±1,...,Tn±1].Underthisidentification,K[S]hasthemonomialbasisTa,a∈S⊂Zn(whereweusethenotationTa=T1a1···Tnan).
IfweidentifySwiththesemigroupK-basisofK[S],thenthereisaconflictofnotation:additioninthesemigroupturnsintomultiplicationinthering.Theonlywayoutwouldbetoavoidthisidentificationandalwaysusetheexponentialnotationasinthepreviousparagraph.However,thisisoftencumbersome.Wecanonlyaskthereadertoalwayspayattentiontothecontext.
S=S0⊕S′
supp(S)={σ1,...,σs}.
4
ˆVIETˆTRUNGWINFRIEDBRUNS,JOSEPHGUBELADZE,ANDNGO
ItisnowclearthataffinesemigroupalgebrasarenothingbutsubalgebrasofK[T1±1,
...,Tn±1]generatedbyfinitelymanymonomials.Neverthelesstheabstractpointofviewhasmanyadvantages.WhenweconsidertheelementsofSasmembersofK[S],wewillusuallycallthemmonomials.Productsaswitha∈Kands∈Sarecalledterms.TheKrulldimensionofK[S]isgivenbyrank(S),sincerankSisobviouslyS=rankgp
thetranscendencedegreeofQF(K[S])=QFK[gp(S)]overK.
IfSispositive,thenHilb(S)isaminimalsetofgeneratorsforK[S].
Itisnotdifficulttocheck,andthereadershouldnotethattheusageoftheterms“in-tegralover”,“integralclosure”,“normal”and“normalization”isconsistentwithitsuse
¯L]istheintegralclosureofK[S]inthequotientfieldincommutativealgebra.SoK[S
QF(K[L])ofK[L]etc.
2.3.Polytopalsemigroupalgebras.LetMbeasubsetofRn.Weset
LM=M∩Zn,
soLMisthesetoflatticepointsinM,andEMistheimageofLMundertheembeddingRn→Rn+1,x→(x,1).VeryfrequentlywewillconsiderRnasahyperplaneofRn+1un-derthisembedding;thenwemayidentifyLMandEM.BySMwedenotethesubsemigroupofZn+1generatedbyEM.
NowsupposethatPisa(finiteconvex)latticepolytopeinRn,where‘lattice’meansthatalltheverticesofPbelongtotheintegrallatticeZn.TheaffinesemigroupsofthetypeSPwillbecalledpolytopalsemigroups.AlatticepolytopePisnormalifSPisanormalsemigroup.
EM={(x,1):x∈LM}⊂Zn+1;
PFIGURE1.Verticalcross-sectionofapolytopalsemigroup
LetKbeafield.Then
K[P]=K[SP]
iscalledapolytopalsemigroupalgebraorsimplyapolytopalalgebra.SincerankSP=dimP+1anddimK[P]=rankSPasremarkedabove,wehave
dimK[P]=dimP+1.
NotethatSP(or,moregenerally,SM)isagradedsemigroup,i.e.SP=∞i=0(SP)isuchthat(SP)i+(SP)j⊂(SP)i+j;itsi-thgradedcomponent(SP)iconsistsofalltheelements(x,i)∈SP.Moreover,SPisevenhomogeneous,namelygeneratedbyitselementsofdegree1.
PROBLEMSANDALGORITHMSFORAFFINESEMIGROUPS5
ThereforeR=K[P]isagradedK-algebrainanaturalwayandgeneratedbyitsdegree1elements.Itsi-thgradedcomponentRiistheK-vectorspacegeneratedby(SP)i.TheelementsofEP=(SP)1havedegree1,andthereforeRisahomogeneousK-algebraintheterminologyofBrunsandHerzog[BH].ThedefiningrelationsofK[P]arethebi-nomialsrepresentingtheaffinedependenciesofthelatticepointsofP.(InSection5wewilldiscussthepropertiesoftheidealgeneratedbythedefiningbinomials.)Someeasyexamples:
Examples2.3.1.(a)P=conv(1,4)∈R1.ThenPcontainsthelatticepoints1,2,3,4,
andtherelationsofthecorrespondinggeneratorsofK[P]aregivenby
22
X1X3=X2,X1X4=X2X3,X2X4=X3.
(b)P=conv(0,0),(0,1),(1,0),(1,1).ThelatticepointsofPareexactlythe4ver-tices,andthedefiningrelationofK[P]isX1X4=X2X3.
(c)P=conv(1,0),(0,1),(−1,−1).ThereisafourthlatticepointinP,namely(0,0),
andthedefiningrelationisX1X2X3=Y3(insuitablenotation).
FIGURE2.
NotethatthepolynomialringK[X1,...,Xn]isapolytopalalgebra,namelyK[∆n−1]where∆n−1denotesthe(n−1)-dimensionalunitsimplex.
ItisoftenusefultoreplaceapolytopePbyamultiplecPwithc∈N.ThelatticepointsincPcanbeidentifiedwiththelatticepointsofdegreecintheconeC(SP);infact,thelatterareexactlyoftheform(x,c)wherex∈LcP.
Polytopalsemigroupalgebrasappearasthecoordinateringsofprojectivetoricvari-eties;seeOda[Oda]
3.HILBERT
BASESOFAFFINENORMALSEMIGROUPS
3.1.Normalityandcovering.InthissectionwewillinvestigatethequestionwhetherthenormalityofapositiveaffinesemigroupcanbecharacterizedintermsofcombinatorialconditionsonitsHilbertbasis.
LetCbeaconeinRngeneratedbyfinitelymanyrational(orintegral)vectors.WesaythatacollectionofrationalsubconesC1,...,CmisatriangulationofCifCiissimplicialforalli(i.e.generatedbyalinearlyindependentsetofvectors),C=C1∪···∪CmandCi1∩···∩CikisafaceofCi1,...,Cikforeverysubset{i1,...,ik}⊂{1,...,m}.
LetMbeasubsetofaconeCasabove.AnM-triangulationofCisatriangulationintosimplicialconesspannedbysubsetsofM,andaHilberttriangulationisaHilb(S(C))-triangulationofC.
Correspondingly,aHilbertsubsemigroupS′ofSisasubsemigroupgeneratedbyasubsetofHilb(S).WesaythatSiscoveredbysubsemigroupsS1,...,SmifS=S1∪···∪Sm.
6
ˆVIETˆTRUNGWINFRIEDBRUNS,JOSEPHGUBELADZE,ANDNGO
AsubsetXofZniscalledunimodularifitispartofabasisofZn;inotherwords,if
itislinearlyindependentandgeneratesadirectsummandofZn.Conesandsemigroupsareunimodulariftheyaregeneratedbyunimodularsets,andacollectionofunimodularobjectsislikewisecalledunimodular.
Proposition3.1.1.IfSiscoveredbyunimodularsubsemigroups,thenitisnormal.Moregenerally,ifSistheunionofnormalsubsemigroupsSisuchthatgp(Si)=gp(S),thenSisalsonormal.
Thisfollowsimmediatelyfromthedefinitionofnormality.
WewillseeinCorollary4.2.3thatthehypothesisgp(Si)=gp(S)issuperfluous,andthatitisevenenoughthattheSicoverS“asymptotically”.
Thefollowingconverseisimportantforthegeometryoftoricvarieties;itprovidesthecombinatorialbasisfortheequivariantresolutionoftheirsingularities.
Theorem3.1.2.EveryfinitelygeneratedrationalconeC⊂Rnhasaunimodulartrian-gulation.
ItisnotdifficulttoprovethetheoremforwhichwemayassumethatdimC=n.OnestartswithanarbitrarytriangulationofC,andconsiderseachoftheinvolvedsimplicialsubconesC′.TheshortestnonzerointegervectorsoneachoftheraysofC′formalinearlyindependentsetX.IfXisnotunimodular,thenXisnottheHilbertbasisofS(C′),andonesubdividesC′byoneofthevectorsr1x1+···+rmxmappearingintheproofofGordan’slemma.ForeachofthesimplicialsubconesC′′generatedbysubdivisionthegroupgp(S(C′′))hassmallerindexthangp(S(C′))inZn.Afterfinitelymanystepsonethusarrivesataunimodulartriangulation.
Especiallyforpolytopalsemigroups,Theorem3.1.2isnotreallysatisfactory,sinceitisnotpossibletointerpretitinthelatticestructureofapolytopeP⊂Zn.Infact,onlythesimplicialHilbertsubconesofC(SP)correspondtothelatticesimplicescontainedinP.Itisnothardtoseethattheconespannedbyalatticesimplexδ⊂Pisunimodularifandonlyifδhasthesmallestpossiblevolume1/n!.Suchsimplicesarealsocalledunimodular.Furthermore,P(regardlessofitsdimension)canbetriangulatedintoemptylatticesimplices,i.e.simplicesδsuchthatδ∩Znisexactlythesetofverticesofδ.
SupposenowthatPisalatticepolytopeofdimension2andtriangulateitintoemptylatticesimplices.Since,byPick’stheorem,anemptysimplexofdimension2hasarea1/2,oneautomaticallyhasaunimodulartriangulation.ItfollowsimmediatelythatSPistheunionofunimodularHilbertsubsemigroupsandthusnormal.Moreover,C(SP)hasaunimodularHilberttriangulation.
FIGURE3.Triangulationofalatticepolygon
PROBLEMSANDALGORITHMSFORAFFINESEMIGROUPS7
Moregenerally,Seb˝ohasshownthefollowing
Theorem3.1.3.Everypositivefinitelygeneratedconeofdimension3hasaunimodularHilberttriangulation.
WereferthereadertoSeb˝ospaper[Se]orto[BG3]fortheproof,whichisbynomeansstraightforward.ThemuchsimplerpolytopalcasediscussedaboveischaracterizedbythefactthattheelementsoftheHilbertbasisofC(S)lieinahyperplane.
Theorem3.1.3alsoholdsindimension1and2whereitiseasilyproved,butitcannotbeextendedtodimension≥4,asshownbyacounterexampleduetoBouvierandGonzalez-Sprinberg[BoGo].
Ashasbeenmentionedalready,triangulationsareveryinterestingobjectsforthege-ometryoftoricvarieties.TriangulationsalsoprovidetheconnectionbetweendiscretegeometryandGr¨obnerbasesofthebinomialidealdefiningasemigroupalgebra.SeeSturmfels[Stu1]forthisimportantandinterestingtheme;wewillbrieflydiscussitinSection5.
DespiteofcounterexamplestotheexistenceofunimodularHilberttriangulationsindimension≥4,itisstillreasonabletoconsiderthefollowing,verynaturalsufficientconditionofunimodularHilbertcoveringforpositivenormalsemigroupsS:(UHC)SiscoveredbyitsunimodularHilbertsubsemigroups.
Forpolytopalsemigroups(UHC)hasacleargeometricinterpretation:itjustsaysthatPistheunionofitsunimodularlatticesubsimplices.Seb˝o[Se,ConjectureB]hasconjecturedthat(UHC)issatisfiedbyallnormalaffinesemigroups.Belowwepresenta6-dimensionalcounterexampletoSeb˝o’sconjecture.Howevertherearealsopositiveresultson(UHC)andevenonunimodulartriangulationsformultiplescPofpolytopes;seeSubsection3.3.
Anaturalvariantof(UHC),andweakerthan(UHC),istheexistenceofafreeHilbertcover:
(FHC)Sistheunion(orcoveredby)thesubsemigroupsgeneratedbythelinearlyinde-pendentsubsetsofHilb(S).
For(FHC)–incontrastto(UHC)–itisnotevidentthatitimpliesthenormalityofthesemigroup.Neverthelessitdoesso,aswewillseeinCorollary4.2.3.Aformallyweaker–andcertainlythemostelementary–propertyistheintegralCarath´eodoryproperty:(ICP)EveryelementofShasarepresentationx=a1s1+···+amsmwithai∈Z+,si∈Hilb(C),andm≤rankS.
Herewehaveborrowedthewell-motivatedterminologyofFirlaandZiegler[FZ]:(ICP)isobviouslyadiscretevariantofCarath´eodory’stheoremforconvexcones.ItwasfirstaskedinCook,Fonlupt,andSchrijver[CFS]whetherallconeshave(ICP)andthenconjecturedin[Se,ConjectureA]thattheansweris‘yes’.LateronwewillusetherepresentationlengthforanelementxofapositiveaffinesemigroupS.Ifρ(x)≤m,wealsosaythatxism-represented.InordertomeasurethedeviationofSfrom(ICP),weintroducethenotion
ρ(x)=min{m|x=a1s1+···+amsm,ai∈Z+,si∈Hilb(S)}
8
ˆVIETˆTRUNGWINFRIEDBRUNS,JOSEPHGUBELADZE,ANDNGO
ofCarath´eodoryrankofanaffinesemigroupS,
CR(S)=max{ρ(x)|x∈S}.
Variantsofthisnotion,calledasymptoticandvirtualCarath´eodoryrankwillbeintro-ducedinSection4.
Thefollowing10vectorsconstitutetheHilbertbasisofanormalpositivesemigroupS6:
z1=(0,1,0,0,0,0),z2=(0,0,1,0,0,0),z3=(0,0,0,1,0,0),z4=(0,0,0,0,1,0),z5=(0,0,0,0,0,1),
z6=(1,0,2,1,1,2),z7=(1,2,0,2,1,1),z8=(1,1,2,0,2,1),z9=(1,1,1,2,0,2),z10=(1,2,1,1,2,0).
Asacounterexampleto(UHC)itwasfoundbythefirsttwoauthors[BG1].IncooperationwithHenk,MartinandWeismantel[BGHMW]itwasthenshownthatCR(S6)=7sothat(ICP)doesnotholdforallnormalaffinesemigroupsS.TheconeC6andthesemigroupS6=S(C6)haveseveralremarkableproperties;forexample,Aut(S6)operatestransitivelyontheHilbertbasis.Thereadercaneasilycheckthatz1,...,z10lieonahyperplane.ThereforeS6=SPfora5-dimensionallatticepolytopeP.Furtherdetailscanbefoundinthepapersjustquoted.
AcrucialideainfindingS6wastheintroductionoftheclassoftightconesandsemi-groups;see[BG1].
SofaronedoesnotknowasemigroupSsatisfying(ICP),butnot(UHC).Thissuggeststhefollowingproblem:
Problem1.Does(ICP)imply(UHC)?
Sincethepositiveresultsendindimension3andthecounterexamplelivesindimension6,thesituationiscompletelyopenindimensions4and5:
Problem2.Proveordisprove(ICP)and/or(UHC)indimension4and5.
Wehaveseenabovethateverytriangulationofalatticepolygonintoemptylatticesimplicesisunimodular.Thispropertyistrulyrestrictedtodimensionatmost2.Infact,Hosten,MacLagan,andSturmfels[HMS]havegivenanexampleofa3-dimensionalconethatcontainsnofinitesetMoflatticepointssuchthateverytriangulationofCusingallthepointsofMisunimodular.
3.2.AnupperboundforCarath´eodoryrank.Letp1,...,pnbedifferentprimenum-bers,andsetqj=∏i=jpi.LetSbethesubsemigroupofZ+generatedbyq1,...,qn.Sincegcd(q1,...,qn)=1,thereexistsanm∈Z+withu∈Sforallu≥m.Chooseu≥msuchthatuisnotdivisiblebypi,i=1...,n.ThenalltheqimustbeinvolvedintherepresentationofubyelementsofHilb(S).ThisexampleshowsthatthereisnoboundofCR(S)intermsofrankSwithoutfurtherconditionsonS.
FornormalSthereisalinearboundforCR(S)asgivenbySeb˝o[Se]:Theorem3.2.1.LetSbeanormalpositiveaffinesemigroupofrank≥2.ThenCR(S)≤2(rank(S)−1).
PROBLEMSANDALGORITHMSFORAFFINESEMIGROUPS9
([0,x]=conv(0,x)isthelinesegmentjoining0andx).Inotherwords,thebottomisexactlythesetofpointsofC′(S)thatarevisiblefrom0(seeFigure4).
FortheproofwedenotebyC′(S)theconvexhullofS\\{0}(ingp(S)⊗R).ThenwedefinethebottomB(S)ofC′(S)by
B(S)=x∈C′(S):[0,x]∩C′(S)={x}
C′(S)FIGURE4.Thebottom
LetHbeasupporthyperplaneintersectingC′(S)inacompactfacet.ThenthereexistsauniqueprimitiveZ-linearformγongp(S)suchthatγ(x)=a>0forallx∈H(after
/,onehasa∈Z.Wecallγthetheextensionofγtogp(S)⊗R).SinceHilb(S)∩H=0
basicgradingofSassociatedwiththefacetH∩C′(S)ofC′(S).Itcanbethoughtofasthegradedstructure
degγ:S→Z+,x→γ(x).ProofofTheorem3.2.1.ItiseasilyseenthatthebottomofSistheunionoffinitelymany
latticepolytopesF,allofwhoselatticepointsbelongtoHilb(S).WenowtriangulateeachFintoemptylatticesubsimplices.Choosex∈S,andconsiderthelinesegment[0,x].ItintersectsthebottomofSinapointybelongingtosomesimplexσappearinginthetriangulationofacompactfacetFofC′(S).Letz1,...,zn∈Hilb(S),n=rank(S),betheverticesofσ.Thenwehave
x=(a1z1+···+anzn)+(q1z1+···+qnzn),